# Critical Behavior of the Heat Capacity in the Region of the Incommensurate Phase Transition of SC(NH<sub>2</sub>)<sub>2</sub> Crystals<sup>1</sup>

S. N. Kallaev,<sup>2,3</sup> I. K. Kamilov,<sup>2</sup> A. M. Aliev,<sup>2</sup> Sh. B. Abdulvagidov,<sup>2</sup> A. A. Amirova,<sup>2</sup> and A. B. Batdalov<sup>2</sup>

The anomalous (nonclassical) behavior of the heat capacity in the region of the second-order phase transition "initial phase–incommensurate phase" was experimentally observed in the  $SC(NH_2)_2$  ferroelectric. Such a critical behavior of heat capacity above and below the temperature of incommensurate phase transition is shown to be qualitatively consistent with the fluctuation theory of XY-type systems.

**KEY WORDS:** critical behavior; ferroelectric; fluctuation; heat capacity; incommensurate phase; phase transition.

# 1. INTRODUCTION

Heat capacity is one of the most fundamental properties that exhibit temperature anomalies in phase transitions. To explain the anomalies of the heat capacity of ferroelectrics in the region of consecutive transitions, "initial phase-incommensurate phase-polar phase," one usually invokes the Landau theory because of its remarkable simplicity. However, the thermodynamic Landau model qualitatively reproduces the anomalous part of the heat capacity of the incommensurate phase only in the temperature range adjacent to the first-order transition, "incommensurate phasecommensurate ferroelectric phase." Experimental studies of a number of

<sup>&</sup>lt;sup>1</sup>Paper presented at the Sixteenth European Conference on Thermophysical Properties, September 1–4, 2002, London, United Kingdom.

<sup>&</sup>lt;sup>2</sup>Institute of Physics, Dagestan Scientific Center, Russian Academy of Sciences, 94,

M. Yaragskogo Street, Makhachkala, 367003 Dagestan, Russia.

<sup>&</sup>lt;sup>3</sup>To whom correspondence should be addressed. E-mail: analit@dinet.ru

physical properties in the region of the second-order phase transition "initial phase–incommensurate phase" demonstrate dramatic deviations from the classical Landau behavior both above and below the transition. The interpretation usually amounts to comparing the measured critical indices with the corresponding theoretical values adopted in the XY-type model.

The deviations from the behavior predicted by the Landau theory and from the regular behavior may be due not only to fluctuations but also to defects [1]. However, the defect theory has not been adequately developed for the XY systems and incommensurate phases in particular; it does not account for the temperature dependences and critical amplitudes of deviations in both phases, which is necessary for the description of the experiment.

To elucidate the possible nature of deviations from the Landau theory, Levanyuk and Coworkers [2] developed a method for analysis of the experimental data in the region of structural transitions on the basis of fluctuation theory. As a result, it was shown by the example of birefringence and thermal expansion coefficients of a ferroelectric crystal [2, 3] that, in the vicinity  $G << |\tau| << G^{1/2}$  of the transition to the incommensurate phase at temperature  $T_i$  (G is the Ginzburg number expressed in terms of the coefficients of the thermodynamic potential [4], and  $\tau = T/T_i - 1$  is the reduced temperature), the diverging corrections no longer approximate the experiment for  $|\tau| \leq 10^{-1}$ . These corrections become large for the incommensurate transitions in various crystals at reduced temperatures  $|\tau|$  on the order of  $G \approx 10^{-2}$  (the value of the correction achieves the jump magnitude), which can be taken as the experimental estimate of the Ginzburg number G. If G is not too small, the anomaly becomes broad and the conclusions are only qualitative.

It is worth noting that the weakness of previous experimental studies (their authors admit this fact themselves) is that the critical index  $\alpha$  is estimated indirectly (see, e.g., Refs. [2] and [3]) and, in some cases, the accuracy of measurements does not satisfy requirements. In this regard, the elucidation of the role of fluctuation effects in the transition to the incommensurate phases in crystals of different types is of fundamental importance. In this work, with the aim of gaining direct information on the nature of the incommensurate phase, we undertook a careful experimental investigation of the critical behavior of the specific heat in the region of a structural transition to the incommensurate phase in the SC(NH<sub>2</sub>)<sub>2</sub> ferroelectric with a one-component order parameter.

## 2. EXPERIMENTAL

 $SC(NH_2)_2$  is the well-known molecular crystal, which undergoes an intricate sequence of structural phase transitions, including transitions to

the polar and nonpolar phases with incommensurate and long-period structures in the region between the initial nonpolar phase  $D_{2h}^{16}(T_i \approx 202 \text{ K})$ and the ferroelectric phase  $C_{2v}^2(T_c \approx 169 \text{ K})$  [1]. Below the temperature  $T_i \approx 202 \,\mathrm{K}$ , an incommensurate superstructure appears with the modulation wave vector along the b axis. The studies were carried out with  $SC(NH_2)_2$  single crystals (unit-cell parameters a = 7.655, b = 8.537, c =5.520 Å) grown from a solution by the temperature lowering method. The geometric sizes of the samples were  $0.50 \times 0.45 \times 0.025$  cm, and their quality was monitored using an optical microscope. The studies were carried out on an automated setup for measuring the specific heat of small samples by ac calorimetry with a relative uncertainty no larger than 0.1%[5]. The average temperature in the calorimeter was measured with a copper-constantan thermocouple with a wire diameter of 100 µm, and the temperature oscillations were measured with a Chromel-constantan thermocouple with a wire diameter of  $25\,\mu$ m. The temperature variation rate did not exceed  $0.01 \,\mathrm{K} \cdot \mathrm{min}^{-1}$ ; in the vicinity of the transition, it did not exceed 5 mK. The stability of the cryostat temperature was within 5mK. The measuring process and the processing of experimental data were controlled by the program HEAT-MASTER for automation of thermophysical measurements.

#### 3. RESULTS AND DISCUSSION

The results of measuring the specific heat  $C_p$  of the SC(NH<sub>2</sub>)<sub>2</sub> crystal in the temperature range of the second-order structural transition "initial phase–incommensurate phase" at  $T_i$  and the first-order transition "incommensurate phase–polar phase" at  $T_c$  are presented in Fig. 1. We will focus on the anomaly of  $C_p$  in the region of the second-order phase transition "initial phase-incommensurate phase" at  $T_i = 201.58$  K. The changes in enthalpy and entropy at the transition point  $T_i$  are, respectively,  $\Delta H_{\rm trs} = 7.4$  kJ·mol<sup>-1</sup> and  $\Delta S_{\rm trs} = 68$  J·mol<sup>-1</sup>·K<sup>-1</sup>. Heat capacity measurements of SC(NH<sub>2</sub>)<sub>2</sub> in the temperature range of the incommensurate phase transition from 180 to 220 K are presented in Table I.

According to Refs. [2–4], the experimental temperature dependence of the heat capacity can be represented as the sum of Landau and fluctuation contributions:

$$C^{+} = C_{b} + \lambda^{+} \tau^{-1/2} \quad \text{at } T > T_{i},$$
  

$$C^{-} = C_{b} + C_{L} + \lambda^{-} |\tau|^{-1/2} \quad \text{at } T < T_{i},$$
(1)



Fig. 1. Temperature dependence of the specific heat  $C_p$  of SC(NH<sub>2</sub>)<sub>2</sub> in the region of phase transitions.

where  $C_b$  is the regular part of the heat capacity,  $C_L$  is the heat capacity jump at  $T = T_i$  (according to Landau),  $\lambda^+$  and  $\lambda^-$  are constants, and the ratio  $\lambda^-/\lambda^+$  is  $\sqrt{2}$  for XY-type systems and  $2\sqrt{2}$  for Ising systems.

As with the temperature dependences of birefringence and thermal expansion coefficients obtained in Refs. [2] and [3], Eq. (1) with  $C_{\rm L} = \text{const}$  and  $\lambda^{\pm} = \text{const}$  properly approximates experiment only if  $C_{\rm b} \neq \text{const}$  (this imposes a limitation on the domain of applicability of the Landau theory). We will assume that the regular part can be represented as a polynomial suitable for the description of empirical data on the thermal characteristics of solids [6] in a limited temperature range on the order of the Debye temperature:

$$C_{\rm b} = c_0 + c_1 t + c_2 t^2,$$

where  $t = T - T_i$ . In this case, Eq. (1) approximates well the experimental dependences in the region from  $1 \le t \le 70$  K and  $-2K < t \le -20$  K (Fig. 1).

According to Eq. (1), the ratio of critical amplitudes  $\lambda^-/\lambda^+$  derived from the measurements of heat capacity ( $\lambda^+ = 0.0598 \pm 0.0033$  and  $\lambda^- =$  $0.0862 \pm 0.0038$  for  $T > T_i$  and  $T < T_i$ , respectively) is equal to 1.441, which corresponds to the theoretical estimate  $\sqrt{2}$  for XY-type systems ( $2\sqrt{2}$  for Ising systems). It follows from the experimental data that the Ginzburg number is G = 1 to  $2 \times 10^{-2}$ . Therefore, the corrections are small in the temperature region  $|\tau| > G$ , while the anomalous scaling behavior can be expected at  $|\tau| < |G|$ .

| <i>T</i> (K) | $C_p(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})$ | $T(\mathbf{K})$ | $C_p(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})$ | $T\left(\mathrm{K}\right)$ | $C_p(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})$ |
|--------------|-----------------------------------------------------------------|-----------------|-----------------------------------------------------------------|----------------------------|-----------------------------------------------------------------|
| 180.973      | 59.407                                                          | 193.747         | 62.063                                                          | 202.339                    | 62.554                                                          |
| 181.316      | 59.452                                                          | 193.962         | 62.143                                                          | 202.475                    | 62.410                                                          |
| 181.553      | 59.499                                                          | 194.115         | 62.134                                                          | 202.535                    | 62.318                                                          |
| 181.733      | 59.528                                                          | 194.634         | 62.215                                                          | 202.613                    | 62.321                                                          |
| 181.878      | 59.549                                                          | 194.951         | 62.294                                                          | 202.617                    | 62.223                                                          |
| 181.988      | 59.556                                                          | 195.186         | 62.545                                                          | 202.702                    | 62.200                                                          |
| 182.133      | 59.595                                                          | 195.536         | 62.469                                                          | 202.786                    | 62.096                                                          |
| 182.205      | 59.647                                                          | 195.935         | 62.726                                                          | 202.907                    | 62.049                                                          |
| 182.275      | 59.777                                                          | 196.601         | 62.743                                                          | 202.956                    | 62.016                                                          |
| 182.314      | 59.790                                                          | 196.845         | 62.800                                                          | 203.054                    | 61.926                                                          |
| 182.621      | 59.857                                                          | 196.985         | 62.911                                                          | 203.265                    | 61.889                                                          |
| 183.038      | 59.792                                                          | 197.369         | 63.058                                                          | 203.705                    | 61.876                                                          |
| 183.327      | 59.899                                                          | 197.683         | 63.061                                                          | 203.869                    | 61.935                                                          |
| 183.472      | 59.941                                                          | 198.101         | 63.163                                                          | 204.077                    | 61.939                                                          |
| 183.834      | 59.944                                                          | 198.274         | 63.139                                                          | 204.314                    | 61.905                                                          |
| 184.195      | 60.033                                                          | 198.516         | 63.168                                                          | 204.754                    | 61.984                                                          |
| 184.412      | 60.040                                                          | 198.590         | 63.318                                                          | 204.990                    | 61.923                                                          |
| 185.114      | 60.253                                                          | 198.676         | 63.344                                                          | 205.429                    | 62.015                                                          |
| 185.423      | 60.235                                                          | 199.073         | 63.405                                                          | 205.793                    | 62.069                                                          |
| 185.652      | 60.322                                                          | 199.327         | 63.507                                                          | 206.272                    | 62.166                                                          |
| 185.999      | 60.374                                                          | 199.818         | 63.572                                                          | 207.404                    | 62.272                                                          |
| 186.396      | 60.382                                                          | 200.007         | 63.684                                                          | 207.636                    | 62.235                                                          |
| 186.714      | 60.451                                                          | 200.145         | 63.634                                                          | 208.102                    | 62.328                                                          |
| 186.946      | 60.582                                                          | 200.521         | 63,780                                                          | 208.469                    | 62.351                                                          |
| 187.319      | 60.706                                                          | 200.765         | 63.947                                                          | 208.764                    | 62.413                                                          |
| 188.042      | 60.692                                                          | 201.109         | 63.971                                                          | 209.479                    | 62.446                                                          |
| 188.290      | 60.842                                                          | 201.225         | 64.084                                                          | 210.148                    | 62.525                                                          |
| 188.660      | 60.969                                                          | 201.418         | 63.948                                                          | 210.868                    | 62.564                                                          |
| 189 373      | 60.856                                                          | 201 487         | 64 065                                                          | 211 255                    | 62.636                                                          |
| 189.626      | 61.090                                                          | 201.521         | 64.095                                                          | 211.783                    | 62.711                                                          |
| 189 841      | 61 115                                                          | 201 581         | 64 1 53                                                         | 212 277                    | 62,720                                                          |
| 190.009      | 61 235                                                          | 201 581         | 64 152                                                          | 212.487                    | 62.726                                                          |
| 190.810      | 61 234                                                          | 201.606         | 64.068                                                          | 213 800                    | 62 800                                                          |
| 191.054      | 61 250                                                          | 201.634         | 64 021                                                          | 213.000                    | 62.834                                                          |
| 191.051      | 61.582                                                          | 201.699         | 63.952                                                          | 214 360                    | 62.031                                                          |
| 191.230      | 61 421                                                          | 201.099         | 63 843                                                          | 214.500                    | 62.929                                                          |
| 191.411      | 61 584                                                          | 201.702         | 63 731                                                          | 215,200                    | 63 018                                                          |
| 192.086      | 61 587                                                          | 201.898         | 63 723                                                          | 213.550                    | 63 112                                                          |
| 192.000      | 61 715                                                          | 201.070         | 63 469                                                          | 217.004                    | 63 113                                                          |
| 192.570      | 61.836                                                          | 201.207         | 63 293                                                          | 217.323                    | 63 223                                                          |
| 192.303      | 61 760                                                          | 202.090         | 63 058                                                          | 210.290                    | 63 265                                                          |
| 192.077      | 61 755                                                          | 202.130         | 62 070                                                          | 219.007                    | 63 370                                                          |
| 102 460      | 61.002                                                          | 202.100         | 62 720                                                          | 220.433                    | 03.379                                                          |
| 173.407      | 01.774                                                          | 202.200         | 02.129                                                          |                            |                                                                 |

Table I. Heat Capacity  $C_p$  of SC(NH<sub>2</sub>)<sub>2</sub>

The dependence of  $\log \Delta C_p$  on  $\log \tau$  above and below the transition point  $T_i$ , where  $\Delta C_p$  is the singular part of the specific heat, is shown for the SC(NH<sub>2</sub>)<sub>2</sub> crystal in Fig. 2. Experiment shows that the specific heat of SC(NH<sub>2</sub>)<sub>2</sub> exhibits anomalous (nonclassical) behavior above  $T_i$ ; in the temperature range  $0.02 \text{ K} < (\text{T} - \text{T}_i) < 0.36 \text{ K}$   $(1.0 \times 10^{-4} < |\tau| < 0.18 \times$  $10^{-2}$ ) and below  $T_i$ , in the range  $0.05 \text{ K} < |T_i - T| < 1.82 \text{ K}$   $(2.5 \times 10^{-4} <$  $|\tau| < 0.9 \times 10^{-2})$ , with the critical indices being, respectively,  $\alpha = -0.04 \pm$ 0.01 and  $\alpha' = -0.04 \pm 0.01$  in qualitative agreement with the fluctuation theory ( $\Delta C_p \sim |\tau|^{-\alpha}$ , the Landau value is  $\alpha = 0$ ). The temperature  $T_i =$ 201.581 K (where  $C_p$  is a maximum) was calculated to within an uncertainty of  $\pm 0.005$  K for both cold and heat modes. It follows from the experimental data that, when  $T_i$  changes by 0.01 K, the value of  $\alpha$  changes by  $\sim 2\%$ .

Note that the value obtained for  $\alpha$  correlates with the results of studies where the critical index  $\alpha$  was estimated indirectly for the improper ferroelectric Rb<sub>2</sub>ZnBr<sub>4</sub> by the birefringence ( $\alpha = -0.05 \pm 0.02$ ) [2] and thermal expansion ( $0 < |\alpha| < 0.07$ ) [3] methods.

Recall that the known calculated value for the XY model lies in the range  $-0.04 \le \alpha < 0$  [7]. Nevertheless, our conclusions about the critical index are only qualitative because the "infinitely sharp" scaling peak is not observed experimentally.



**Fig. 2.** Log–log plot of the anomalous part of the specific heat of SC(NH<sub>2</sub>)<sub>2</sub> against the reduced temperature  $\tau = T/T_i - 1$ ;  $T_i = 201.58$  K.

#### 4. CONCLUSION

In summary, the results of our study on the specific heat of  $SC(NH_2)_2$ and the corresponding theoretical analysis, according to Ref. [2], provide evidence that there is a critical region in the vicinity of the incommensurate phase transition  $T_i$ , where the anomalous behavior agrees qualitatively with the theory while making allowance for the critical fluctuations of the order parameter.

#### ACKNOWLEDGMENT

This work was supported by the Russian Foundation for Basic Research (Project Nos. 00-07-90241, 00-15-96662, 02-07-06048).

## REFERENCES

- 1. R. Blinc and A. P. Levanyuk, eds., in Incommensurate Phases in Dielectrics, Vols. 1, 2 (North-Holland, Amsterdam, 1986).
- N. R. Ivanov, A. P. Levanyuk, S. A. Minyukov, I. Kroupa, and I. Fousek, *Ferroelectrics* 96:83 (1989).
- 3. N. R. Ivanov and J. Fousek, Izv. Akad. Nauk, Ser. Fiz. 54:659 (1990).
- 4. A. Z. Patashinsku and V. L. Pokrovskiii, *Fluctuation Theory of Phase Transitions* (Nauka, Moscow, 1982; Pergamon, Oxford, 1979).
- 5. Sh. B. Abdulvagidov, G. M. Shakhshaev, and I. K. Kamilov, Prib. Tekh. Eksp. 5:134 (1996).
- 6. S. I. Novikova, Thermal Expansion of Solids (Nauka, Moscow, 1974).
- 7. S. Ma, *Modern Theory of Critical Phenomena* (Benjamin, Reading, 1976; Mir, Moscow, 1980).